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BACKGROUND

Increased warranty of Solar Photovoltaic Modules (SPM) in recent years.

GOAL: photovoltaic system that can attain a thirty-year (30yr) service life by the year 2020 
(Hulstrom, 2005; Quintana, King, McMahon, & Osterwald, 2002). 

POSSIBLE: when the rate of power degradation of the modules per year is between 0.5% and 
1.0% maximum.

 HOWEVER: installed modules experience annual power degradation rates of about 0.5% to 
10% . 
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BACKGROUND
DEGRADATION FACTORS
Several factors account for the degradation of installed SPV modules:

Exposure of modules to a range of cyclic temperatures coupled with elevated 
temperature operations. (Induced thermo-mechanical stresses)

Increased Moisture Accumulation ; corrosion of the solder joints and Ag fingers 
leading to significant losses in PV module performance (Dhere & Raravikar, 2001; 
Polverini, Field, Dunlop, & Zaaiman, 2013)

Operations under a wide range of operating currents and voltages , huge variation 
in weather conditions

(Macben Makenzi, 2015)reported  degradation and failure mechanisms of SPV are 
location dependent
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Fig 1: Moisture accumulation in SPV
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BACKGROUND
SPV modules are exposure to a range of cyclic temperatures

Field SPV modules installed in sub-Saharan ambient experience temperature swings of about 
45 ⁰C each day.

The outdoor weathering effects expose PV modules to direct sunlight in an alternating 
day/night cycles which exposes modules to thermal loading.

 The variation in the co-efficient of thermal expansion of constituent materials forming the 
individual cells in the module.

The daily temperature swings induce fatigue related failure mechanism occasioned by 
mismatch of the respective temperature co-efficients of thermal expansion (CTE) of silicon, EVA, 
glass, copper and solder bonded together.

Formation of micro-cracks leading to increase resistance across solder joint area (output power 
loss).
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BACKGROUND

Si wafer-Ag-Solder-Copper 
interface

Fig2. Conventional front-to-back cell interconnection in c-Si PV module
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JUSTIFICATION/PROBLEM STATEMENT
The development of indoor tests that have the ability to predict real outdoor conditions accurately is quite 
challenging. A number of research findings suggest various methods which include:

 Expanding on the certification procedures outlined in IEC 61215 thermal cycling test (TC 200) by increasing the 
number of cycles, increasing the temperature range or ramp rates(Owen-Bellini, Zhu et al. 2015). 

Other studies have also used field data for PV reliability prediction:

For instance (Cuddalorepatta, Dasgupta et al. 2010) in their study of the durability of Pb-free solder between 
copper interconnect and silicon in PV cells used a field condition with a temperature range between 63°C and 17°C
from a data provided from a sponsoring company

(Park, Jeong et al. 2014) used field data with a cycle time of 24 hours: 23-67°C; 390 minutes ramp up and 330 
minutes ramp down; 2 hours dwell in high temperature and 10 hours in low temperature to estimate the 
degradation rate of multi-crystalline silicon. 

Different Constitutive models of EVA (ethylene Vinyl Acetate) have been used in various modelling studies:  
(Linear elastic, Temperature dependent Young’s Modulus, Linear Viscoelasticity)
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RESEARCH AIM AND OBJECTIVES
The aim of this research work is to Study the interconnections in photovoltaic modules for improved thermo-
mechanical reliability in Sub-Saharan Africa.

The Objectives of the study are:

I. to generate temperature cycle profile from in-situ climatic condition for accurate prediction of thermo-
mechanical degradation of c-Si photovoltaic module in a  Sub-Saharan Africa Ambient.

II. to evaluate the impact of encapsulant (EVA) constitutive behaviour on interconnect damage in C-Si Solar PV 
Modules installed at a Test site in Sub-Saharan Africa region.

III. to evaluate the effect of IEC 61215 thermal cycle and operating module temperature cycle(test region 
thermal cycle) on creep damage and  fatigue life of interconnection in photovoltaic modules.

IV. to evaluate the effects of temperature ramp rates and dwell times on degradation of interconnections on 
SPV modules operating in sub-Saharan African region.
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OVERVIEW OF METHODOLOGY
Data was obtained from a test site (The site location 
is at College of Engineering, KNUST, Ghana; on 
latitude 6º 40" N and longitude 1° 37" W, at an 
elevation of 250 m above sea level) .

The modules are unshaded and mounted on an 
inclined rooftop with a tilt angle of 5°, and oriented 
toward the equator (southwards)

Calibrated Platinum sensors (PT100) with 
measurement accuracy of ±0.5 °C, resolution of 0.1°C 
and positioned at the center of each module (on the 
backside) measured the module temperatures.
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Fig 3: Test Rig
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OVERVIEW OF 
METHODOLOGY

A rainflow counting 
algorithm developed 
using a MATLAB 
program to determine 
the number of 
temperature cycles 
experienced by the 
modules each year.

An algorithm was also 
developed in MATLAB 
to select the 
temperatures at the 
peaks.
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OVERVIEW OF METHODOLOGY

3-D representative geometric models 
were created by using a combination of 
Constructive Solid Geometry (CSG) and 
Boundary Representation (B-Rep)
modelling technique.
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Simulation was optimized for 
accuracy and computational speed 
within the power of the computing 
resource, a quarter of  meshed cell-
to-cell interconnect model for 
simulation (FEA).

Layer Material Size (Length x Width) Thickness(µm)
Glass 0.352 m x 0.156 m 3600 
EVA 0.352 m x 0.156 m 450 
Silicon 0.156 m x 0.156 m 175 
Copper Ribbons 0.156 m x 0.003 m 150 
Solder 0.156 m x 0.003 m 20 
IMC (Ag3Sn, Cu3Sn) 0.156 m x 0.003 m 4 
Aluminium Rear Contact 0.156 m x 0.156 m 25 
Silver (Ag) Busbars 0.156 m x 0.003 m 50 
Tedlar Backsheet 0.352 m x 0.156 m 175 

Mesh Statistics:
Nodes: 63937
Elements:12852

FINITE ELEMENT MODELLING (FEM) OF SOLAR CELL

Fig 6: Meshed Model of Solar cell

Table 1: Geometric Parameters of Solar cell materials
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OVERVIEW OF METHODOLOGY
Layer Material Constitutive Behaviour

1 Glass Glass Isotropic linear elasticity
2 Encapsulant EVA

(Ethelyne vinyl Acetate)
1. Linear elasticity
2. Temperature dependent Young’s

Modulus
3. Linear Viscoelasticity

3 Solar Cell Silicon Anisotropic Material with different elastic
constants in different loading directions

4 Interconnector Copper Bilinear Model (Young’s modulus 
temperature dependent)

5 Busbar Silver fingers Isotropic Linear elastic
6 Rear contact Aluminium Isotropic Linear elastic
7 Interconnecting

Material
Solder (SnPb, SnAgCu)+
IMC (Cu3Sn, Ag3Sn)

Creep (Generalised Garafalo creep model)

8 Backsheet Tedlar Isotropic linear elasticity

Table 2: Cell Material Modelling
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OVERVIEW OF METHODOLOGY
A bonded contact type formulation 
with default trim tolerance was used 
in modelling all the contacts created 
by the different materials in the cell 
assembly.

A direct solver was employed in the 
computation of the numerical 
solution to improve the accuracy of 
simulation results. 

A high performance computing 
resource (HPC) at The Energy Center 
(TEC), KNUST was used for the study.
(Procured by EnPE)
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Specs: 
 40 core Intel Xenon 2.65 GHz Processors
 128 GB RAM, NVIDIA Graphics

Fig 7: HPC Workstation

13



OVERVIEW OF METHODOLOGY
THERMAL LOADS AND BOUNDARY CONDTIONS                

 Generate Thermal loads and boundary conditions from real-time temperature signals 
recorded for 2012, 2013, 2014.

 Generate Test Region Average (TRA) Thermal loads and Boundary conditions.

 Generete IEC 61215 thermal cycle ( 85°C to -40°C, 100°C/min ramp, 10 min dwell (Hot
&Cold dwell))

 Generate Ramp rates, dwell times and temperature gradients.

Modelling Solar Photovoltaic cell interconnections in Sub-Saharan Africa 14



OVERVIEW OF METHODOLOGY
LIFE PREDICTION OF SOLDER JOINTS  
Accumulated Creep Energy Density (ACED)/Accumulated Strain Energy Density (ASED) Method

Creep strain energy density is based on the deformation that is internally stored throughout the volume of the 
joint during thermal loading. 

In practice, the change in accumulated creep energy density per cycle (∆𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎) averaged over the volume of 
solder is used for predicting the cycles of failure

∆𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 = ∑𝑖𝑖
𝑛𝑛𝑊𝑊2

𝑖𝑖𝑉𝑉2𝑖𝑖

∑𝑖𝑖
𝑛𝑛 𝑉𝑉2𝑖𝑖

− ∑𝑖𝑖
𝑛𝑛𝑊𝑊1

𝑖𝑖𝑉𝑉1𝑖𝑖

∑𝑖𝑖
𝑛𝑛 𝑉𝑉1𝑖𝑖

Where 𝑾𝑾𝟐𝟐
𝒊𝒊 , 𝑾𝑾𝟏𝟏

𝒊𝒊 is the total accumulated strain energy density in one element at the end point and the starting 
point of one thermal cycle respectively.

𝑽𝑽𝟐𝟐𝒊𝒊 , 𝑽𝑽𝟏𝟏𝒊𝒊 is the volume of element at the end point and start point of one cycle respectively  (Syed 2004)
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RESULTS AND DISCUSSIONS
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Figure 8 Distribution of observed daily module temperatures for 2012, 2013 and 2014 

SOE 1: To generate temperature cycle profile from in-situ climatic condition for accurate prediction of     
thermo-mechanical degradation .

Fig. 9: Daily temperature profile (monthly average) observed for 2012 - 2014  
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RESULTS AND DISCUSSIONS

Modelling Solar Photovoltaic cell interconnections in Sub-Saharan Africa

Test Year 2012 2013 2014 IEC 
61215 

 Dwell  time (min) Mean Hot dwell 212 225 219 10 
Mean Cold dwell 359 357 390 10 

Ramp rate (°𝑪𝑪/𝒉𝒉𝒉𝒉) Mean. ramp rate 9.51 8.65 8.82 100 
Mean module Hot Dwell Temperature (HDT)/ (°𝑪𝑪) 63.7 57.9 56.1 85 
Mean module Cold Dwell Temperature (CDT)/ (°𝑪𝑪) 23.5 23 24.4 -40 

Temperature gradient 40.2 34.9 31.7 125 
 

Figure 10: Monthly average distribution of hot dwell times (2012-2014) Figure 11: Monthly average distribution of cold dwell times (2012-2014)

Table 4: Summary of the parameters of the temperature cycle profile of the years
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		Test Year

		2012

		2013

		2014

		IEC 61215



		 Dwell  time (min)

		Mean Hot dwell

		212

		225

		219

		10



		

		Mean Cold dwell

		359

		357

		390

		10



		Ramp rate (

		Mean. ramp rate

		9.51

		8.65

		8.82

		100



		Mean module Hot Dwell Temperature (HDT)/ (

		63.7

		57.9

		56.1

		85



		Mean module Cold Dwell Temperature (CDT)/ ()

		23.5

		23

		24.4

		-40



		Temperature gradient

		40.2

		34.9

		31.7

		125









RESULTS AND DISCUSSIONS
GENERATED IN-SITU THERMAL CYCLE PROFILES

Modelling Solar Photovoltaic cell interconnections in Sub-Saharan Africa

Figure 12: in-situ thermal cycle profiles fitted onto real time module temperature 
profile for 2012-2014.

Fig.13: Plots of twelve-cycle profile of (a) the IEC 61215 Test 
Qualification and (b) the Test Region Average (TRA).
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RESULTS AND DISCUSSIONS

Modelling Solar Photovoltaic cell interconnections in Sub-Saharan Africa

SOE 2: To evaluate the impact of encapsulant (EVA) constitutive behaviour on interconnect damage in C-Si SPVM.
(a) Tin Lead solder Interconnections (b)  Lead free solder Interconnections 

  

  

  
 

 

 

 
 

  

EVA as a Linear Elastic Material Model (LEMM) 

EVA with Temp-dependent Elastic Material Model (TDEMM) 

 

        

           

  

  

  
 

 

 

 
 

  

        

  p p     ( ) 

 

EVA as a Linear Viscoelastic Material Model (LVMM) 
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Fig 12:Equivalent von-Mises Stress distribution in EVA Fig 13:Equivalent von-Mises Stress vrs Thermal Cycles



RESULTS AND DISCUSSIONS
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SOE 2: To evaluate the impact of encapsulant (EVA) constitutive behaviour on interconnect damage in C-Si SPVM.
(a) Tin Lead solder Interconnections (a) Lead free solder Interconnections(a) Tin Lead solder Interconnections (a) Lead free solder Interconnections
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(a) Tin Lead solder Interconnections (b)  Lead free solder Interconnections 
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Fig 14 Equivelent Creep Strain distribution in solder



RESULTS AND DISCUSSIONS
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SOE 2: To evaluate the impact of encapsulant (EVA) constitutive behaviour on interconnect damage in C-Si SPVM.
(a) Tin Lead solder Interconnections (a) Lead free solder Interconnections(a) Tin Lead solder Interconnections (a) Lead free solder Interconnections
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EVA with Temp-dependent Elastic Material Model (TDEMM) 
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Fig 15:Total Deformation of Interconnect 



CONCLUSION

Five (5) Manuscripts:

1. Review Paper: Literature : (Manuscript submitted)

Ms. Ref. No.: MEE-D-18-00310
Title: Robust crystalline silicon photovoltaic module (c-Si PVM) for the tropical climate: future facing 
the technology. https://ees.elsevier.com/mee/.

2. Nyarko, F. K. A., Takyi, G., Amalu, E. H., & Adaramola, M. S. (2018). Generating temperature cycle 
profile from in-situ climatic condition for accurate prediction of thermo-mechanical degradation of 
c-Si photovoltaic module. Engineering Science and Technology, an International Journal. 
doi:https://doi.org/10.1016/j.jestch.2018.12.007
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PROGRESS STATUS:

https://ees.elsevier.com/mee/
https://doi.org/10.1016/j.jestch.2018.12.007


CONCLUSION

Five (5) Manuscripts:

3. Impact of Encapsulant constitutive behaviour on thermomechanical damage in crystalline silicon 
(C-Si) Solar PV Modules (SPVM).  (Manuscript ready for proof reading)

4. Fatigue life prediction of Pb-free (SnAgCu) and SnPb solder joints in c-Si Solar PV Cell interconnect 
under in-situ field thermal cycling. (Manuscript  under development)

5. Effects of Ramp rates, dwell times and temperature gradient on solder Joints degradation in c-Si 
solar PV under field thermal cycling (Manuscript  under development)
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